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ABSTRAC

Let X be a positive recurrent regenerative process on state space S

with steady-state distribution %. Given a function f : S * R, we

consider the problem of estimating the steady-state central moments

k(f) - S (f(x)-r)k x(dx) where r is the steady-state mean of

f(X(o)). We obtain strong laws, central limit theorems, and confidence

intervals for our estimators, and present numerical results.
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I IMIRODUCTION

Let X - (X(t) : t < 0) be a (possibly) delayed regenerative process

taking values in state space S, with regeneration times T(-I) - 0 < T(O)

< T() < se. (to Incorporate regenerative sequences {Xn : n > 0), we pass

to the continuous time process X(.) defined by X(t) - X t] where It]

is the greatest integer less than or equal to t). Under quite general

conditions (see, for example, p. 185 of HEYMAN and SOBEL (1982)), there

exists a probability distribution % on S such that

(1.1) rt fM - t f f(X(s)) ds * f f(y) x(dy) r(f)
0 S

ass. as t * for a broad class of functions f: S R s.

An important problem that has been extensively studied in the

simulation literature concerns the estimation of the parameter r(f); r(f)

has the interpretation, as is clear from (1.1), as the steady-state mean of

f(X(-)). In certain applications, however, it may also be of interest to

estimate the fluctuations of f(X(,)) around its steady-state limit. To

be precise, set fC(.) - f(.) - r(f) and put v(f) - r(f 2) (for g : S + t,

define gm : S + a via go(z) - g(x) * g(x) .-. g(x) (a times)).

Letting f2 play the role of f in (1.1), we observe that v(f) may beC

regarded as the steady-state variance of f(X(-)).

More generally, let p (f) - r(fa); then a(f) is the m'th
a~f) s them'thsteady-

state central moment of f(.). Clearly, pl(f). - 0 and P2(f) - v(f).

Note that estimation of %(f) - r(f ) is not a special case of the

standard regenerative method (see, for example, IGLEHART (1978)), since

fc depends on the unknown parameter r(f), which itself must be

9 . .",' .' -, .\, * , --..--- ,, '- ' -. '..,-," . ' ,,'''''\ .. '."'""" ." -i """ - " . .""""'- -'." .",' ." '-"."



estimated. Our goal, in this paper, Is to develop an estimation

methodology for the central moments, PM(f). In Section 2, we prove the

required limit theorems upon which our methods are based. Section 3

develops confidence intervals for central moments, and numerical results

are presented In Section 4.

2. ESTIKATRS AnD LNIT ORMu FOR CNRVL NOTM s

We assume throughout the remainder of this paper that:

(2.1) (Y (fa) + 1) <-

where

T(n)
in T(n) - T(n-I) and Yn(g) - f g(X(s))ds

T(n-1)

for functions g : S + I. Our goal is to estimate the central moments

k(f), I< k< .

The following binomial representation of the central moments is

crucial to our development:

(2.2) Ipk(f) - r((f - r(f)))k

l.-0

For g : S * R, set r(ng) i n (g)/%, where

2
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k~g I± Yk(g)

and ~

Relation (2.2) suggests that

(2.3) u(nk) - k ~ r(n, fJ) (-1)klJ r(n,f)k-j

should be a reasonable estimator for P~)

(2.4) PROPOSITIO. u(n,k) -* Pk(f) a.s. as n * ,for I < k < 2.

PROO. From (2.2) and (2.3), It is clear that we need only show that

r(n, fk) W ~k ) aeu. as n + -, for k < 2n. The strong law of large

- knumbers applies to both the numerator Y n(f ) and denominator -

yielding the required convergence, provided that Ely 1(f k)I < - and

Ev<-. Clearly, (2.1) implies that ET I ,<whereas the inequality

E1y(f k )I 1 3(f TO f(X(5))jk ds)
* T(0)

E( if T(I + f(Z(s)) 2m ds)
T(O)

- + gY I(f 2z) <a

provides the finiteness of the other moment.

3
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By Proposition 2.4, u(n,k) is strongly consistent for M.k(f). To

state our next result, we shall use the notation o (n-1/2) to denote

the sequence of random variables (r.v.'s) 6n  such that n1/ 2 6n -0 0 as

n-# a, where - means weak convergence. The following properties follow

easily from our definition and standard results about weak convergence (see

p. 92 of CHUNG (1974)):

(2.5) 1) if X = op n- 1/ 2) and Yn = °p(n -1/ 2 ) '

then Zn i n yn -o p(n- /2 )

ii) if Xn -4 X and Yn o °p(n - / 2 )9

then Zn an • n o °p(n- / 2 ).

For our next limit result, we will need the following central limit

theorem (CLT).

(2.6) PROOITI OU. For I < k < a, ,
1/2(r(n,fk) - r(fk)) -0 o(f 

k

N(0,1) as n + -, where 2(g) - ZZ2(s)/(E )2 , Zn(g) -Yn(g) - r(g) n

and N(O) is a mean zero normal r.v. with unit variance.

Proposition 2.6 is well known in the regenerative simulation

literature (see, for example, Iglehart (1978), It is a CLT for estimators

of the uncentered steady-state moments of f(X(o)).

(2.7) PmOSZTIO. u(n,k) a r(n,fk) + o p(n - 1 / 2 ) for I < k < m, where

f (.)- f k(.- kj _ Mf f (0).
k k -

4



PROOF. Observe that

(2.8) u(n,k) k (k) r(nfJ) (_1 )k1j r(f)k-j
j1-0

k1 r(n,f j ) (-I)k - (r(n,f)k- - r(f)k-J)
J=O

Evidently, for 0 < p < k,

(2.9) n1/2(r(n,f)l - r(f)1 ) r(n,fp)

n/112(r(n,f) - r(f)) r(n,f)J r(f)' 1- - J ) r(h,f p )

J.O

From the proof of Proposition 2.4,

(2.10) C ) r(n,f)j r(f))- l- J ) e r(n,fp ) * .tr(f) '•* r(fp ) a.s.
JmO

as n .- , so that (2.9) and (2.10) together imply that

(2.11) (r(n,f) - r(f) ) * r(n,fp )

- (r(n,f) - r(f)) • Ir(f) - 1 r(f p ) + o p(n - I / 2)

kBy noting that the first sum on the right-hand side of (2.8) is r(n,fk),
c

we can combine (2.8) and (2.11) to obtain

5



u(n,k) - r(n, fk) + (r(n,f) -r(f))

k-I (k) r(f j ) (-I)k- j (k-J) r(f)k- J - I + o

iap

- r(n, fk) -r(n, f )*kk-0 Pk)rf)(1 kIi~kji+0~I2

k-1 k-~ ) r(dJ) (_l)k-'-J r(f)k-J-' + o (n-/2

- r(n, fk
) + ap(n

-I/2)

Let 1(n) - (u(nl), ... , u(nm))T and P _ (PI(f), . L

We take all vectors as column vectors and T denotes transpose.

(2.12) 7HbOMR. n 1/2((n) - a#) u N(O, C(f)) where N(O, C(f))

is a waltivariate normal r.v. with mean vector 0, and covariance matrix

C(f) with elements given by

2C i(f) - EZIL(f) ZI(f )I(E-9 1 )

PROOF. Let a be a arbitrary column vector in 1m, and note that

Proposition 2.7 Implies that

6



J(U(n) -

- a1(r(n,f1) I i(f)) +o
i-IP

a LOp~nn + l/2)  /2

a X ai (f i)/Tn +o(n
1 /2

i-Ip

where

n

Z (a) S n-1  I Zk(g) , for g : S R.
k-I

In the second equality we have used the fact that gi(f) - r(fi). Standard

arguments then show that

n 1/2(aT(U(n) -)).0 (aT C(f)a) 1/ 2 N(0,1)

as n . a; the Cramer-Wold device (BILLINGSLEY (1968), p. 48) then yields

the desired theorem.

Theorem 2.12 shows that our estimators have an asymptotically norr.-

distribution; it is, of course, a limit theorem expressed in terms of an

index n corresponding to the number of regenerative cycles simulated.

However, in certain settings, it is more natural to express limit theorems

in term of t, the amount of time that the process X has been

simulated. Then, N(t) - max(n : T(n) < t} is the number of regenerative

cycles completed by time t. Set

7



u(N(t),k); N(t) > 1u (k) - {
0; N(t) < 1,

and

ut  ( t(t), ..., ut~m)) •

(2.13) PROPOSITIOi. ut(k) pk(f) a.s. as t +-, for 1 < k < 2m.

This follows immediately from Proposition 2.4 and the fact that

N(t) ' a.s. as t +.

1(2.14) TBEORU. t/(Ut - ) N(O, C*(f)) as t +-, where C*(f)

is given by

C* (f) = EZz(fi) Zi(f )/E1 •

The proof of Theorem 2.14 is based on making a "random time change" by

substituting the process N(t) for the parameter n in Theorem 2.12,

giving

N(t)1/2(U(N(t)) - a) = N(O, C(f))

since N(t) : t/ET1, we obtain the result. For a rigorous proof of a more

general result, see Theorem 3.10 of GLYNN and IGLEHART (1985).

Specializing our results to the steady-state variance, we observe that

the estimator u(n,2) (u t(2)) is asymptotically normal with limiting

variance given by EZ(EZ . Since 2

. 22
.IZ(f c ) , it follows that the asymptotic variability of our steady-state>c

8
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variance estimator is unaffected by having to estimate r(f). (Note that

EZ (f 2 )2 /(E 2 is the variance of the limiting normal r.v. which

approximates r(n, f2 ).) For higher-order central moments, however, the

variances will generally differ.

3. CONFIDENCE INTERVAL GENERATION

In this section, we use our limit theorems of Section 2 to construct

confidence intervals for the k'th central moment. To accomplish this, we

need consistent estimators for the covariance matrices Cf) and C*(f).

Set

Tr(k)

Ak(n,i,j) - f (f(X(s)) - r(n,f))1 ds
T(k-1)

'r(k)

f (f(X(u)) - r(n,f)) J du
T(k-I)

and

A niDj) I Ak(n,i,j)

(3.1) PROPOSITION. For I < i, J < m,

A(ij) + EY (f c) Y (f) a.s. as n +

9

44 .5 % %.,.



PROW1. Note that

k.0 .0

I nY (f ik )yf~)k+

(k 1j ).C ) (-1)k+ r(f) +
k 0 1-0 ± .1

Y(fi-k ) fJ-1 k+.1

*EY 1Y(f )T 1 f

I cr(~ I1(fc

aos. as n +4w, by the strong law of large numbers.

Let

U'C(n,i,J) - [A f(I.J) -Ju(n, i-I) A n(iI) - u(n,j,) In(i,0)

n

-iu(n, i-1) 1 (1,J)

+ iju(n, i-1) u(n, J-1) j(1,1)

+ iu(n, i-1) u(n,j) 1 n(1,0)

- U(n,i) in(0,J)

+ Ju(n,i) u(n,j-I) A n (0,I)

+ u(n,i) U(n,j) 1 im(0,0)1

Propositions 2.4 and 3.1 together yield the following result.

10



(3.2) PIOPOSITION. For 1 < i,j j m, C(ni,j) Cij(f) a.s. as n *.

Application of the converging-together lemma (BILLINGSLEY (1968),

p. 5) to Theorem 2.12 and Proposition 3.2 shows that if C(kkf) > 0

(1 < k < m), then

[ u ( n ,k ) - z ( 6 ) n l / 2- --, u ( n ,k ) + z ( 6 ) 
n l1 /2

is an asymptotic 100(1-6)% confidence interval for pklf), where z(6)

solves P{N(0,1) < z(6)} I 1 - 6/2.

A similar confidence Interval can be based on simulation of X to

time t. Set

((i'(t), I, J) "(t) ; (t) < I

("0; N(t) < 1

(3.4) PROPOSITION. For I < i, J < a, C (i,j) * M a.s. as t +e.

This result is an immediate consequence of Proposition 3.2, and leads

to the following asymptotic 100(1-6)% confidence interval for pk(f)

(assuming Ckk(f) > 0, 1 < k < a):

(3.5) [ut(k) - z(6) -tk . -/2 , ut(k) + z(6) 
t1/2

S11
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For the steady-state variance v(f) - p2(f), we can use our knowledge

that pl(f) - 0 to obtain a simpler family of estimates for C2 2(f) and

C32(M). Note that

(3.6) EZ(f 2)2 2 Ez (f2 )2

- EY (f2 )2 2v(f) Y,(f ).C + V(f)2 ET 2

Set

(a) - . (2,2) - 2u(n,2) An(2,0) + u(n,2)2 An(0,0)}

n

00

0 C c(N(t)) v N(t) ; N(t) > I

Ct

0 ;N(t) < I

Propositions 2.4 and 3.1 show that C (n) + C i(f) a.s. as a * and

C 0 C M(f) a.s. as t *., provided a > 2. Thus, if C22 (f) > 0, the

following Intervals are 100(1-6)Z asymptotic confidence intervals for

.4.:

-,CO(n) 
1/2  0~n 1/2

(3.7) [u(2,n) - z(6) C , u(2,n) + z(6) 1/2

0 1/2 n11 2

(C0) /2(3.8) (u (2)l 11

_. (3.8) [u,(2) - z(6) ti/2 , ut( 2) + z(6) t1/2

12
,€L'o



4. NIIMZUCAL RESULTS

To illustrate the results obtained in the previous section we have

I! simulated three models: the waiting time process in the M/M/1 queue (p

oth0.5), an (s,S) inventory model, and the classical repairman model. For all

three models we selected f to be the identity function (f(x) - x) and

k - 2, so that our goal was to estimate the variance of the steady-state

4 distribution.

(4.1) MANPLE. M/M/i Queue. This model is the single server queue with

7Poisson arrivals and exponential service times. We simulate the waiting

time process V - (Wn : n > 0), where Wn  is the waiting time (exclusive

of service time) of the nth customer. Our simulations were carried out for

arrival rate X - 5 and service rate p - 10, and hence the traffic

intensity p - 0.5. This guarantees that W -+ W as n + e.
n

Regenerative cycles begin at those values of n for which W n 0. The

2quantity being estimated here is a W - 3.0. We did 50 replications of

* 5000 cycles each. The sample mean of the 50 point estimates, u(2,5000),

was 3.0417, and the sample mean of the 50 point estimates of C22(f)/
0 1/2
C (5000) , was 13.2782. As a result, the sample mean of the 90%

confidence intervals was [2.7328, 3.3506]. The coverage probability was

582.

(4.2) AmnsJI. (s,S) Inventory Model. This model is a periodic review

inventory model with a stationary (s,S) ordering policy. An (s,S) policy

is characterized by two positive integers: s and S with a < S. If the

13



mount of inventory on hand plus on order is less than s, order to bring

the sum up to S. If the inventory is greater than or equal to s, do not

order. Let X denote the level of inventory on hand plus on order ina
period n imediately after the ordering decision. If d denotes then

demand in period n, then

I I -d , d < -,

X n n n-n
, otherwise.

We assume that s < XO.< S. The state space of ( : n > 0) is (s, s +

.s ... , S) For this example we have selected s - 6, S = 10, and

3/8 , J-0

1/4 , j=1

P(d - J) - 3/16 J - 2

1/8 . -3

1/16, j - 4

Again we simulate to estimate a2 (} - 2.3333. Using i 10 as the

regenerative state we run 50 replications of 1000 cycles each. The sample

mean of the 50 point estimates, u(2,1000), was 2.3352 and the sample mean

of the 50 point estimates for C2 2(f)
1/2 , CO(o00)1/ 2 , was 1.2396. The

sample mean of the resulting 50 90% confidence intervals was 12.2708,

2.3997). The coverage probability was 94%.

(4.3) UZAIIPJ. Classical lepairmen Ndel. This ,model is a continuous

L, / time Markov chain with X(t) denoting the number of failed units under-

going or waiting for service at the repair facility at time t. We have

S14



a + n identical machines each with an exponential failure time with

failure rate X. At most n of the units operate at one time, the other

a being thought of as spares. When a unit fails, it is sent to a repair

facility consisting of a repairmen (servers) having exponential repair

(service) times with repair rate p. With these assumptions ((t) :

t > 0) Is a birth-death process with state space {0,1, .... q + n},

birth parameters X, a (n - [i - ml+ A, and death parameters 1L - P •

min(i,s). For this example we have used n - 10, m - 4, X - 1, p - 4, and

s * 3. Again we are interested in estimating the steady state variance,

W - 5.231. We ran 50 replications of 1000 cycles each with the

regenerative state taken to be i - 2. The sample man of our 50 point

estimates, u(2,1000), was 5.1916, and the sample mean of the 50 point

1/2 0 1/2estimates of C2M C (5000) 1
, was 11.5562. The sample mean of

the 50 90Z confidence intervals was [4.5905, 5.7927). The coverage prob-

ability was 74Z.

I
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